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Abstract

We consider an online density estimation problem under the Bradley-Terry model
which determines the probability of the order between any pair in the set of n
teams. An annoying issue is that the loss function is not convex. A standard
solution to the avoid the non-convexity is to change variables so that the new loss
function w.r.t. new variables is convex. But, then the radius of the new domain
might be huge or unknown in general, for which standard algorithms such as OGD
and ONS have suboptimal regret bounds. We propose an algorithm with regret
O(lnT ) which works without the knowledge of the radius.

1 Introduction

Prediction problems of rankings over a set of items appear in many contexts such as information
retrieval and recommendation tasks. Probabilistic models on rankings are useful for these tasks.
Among probabilistic models over ranking, Bradley-Terry model [1, 2, 3] would be arguably the
most fundamental one. Given a set [n] = {1, . . . , n} of n teams (or items), let Θ = {θ ∈ Rn+ |∑n
i=1 θi = 1} be the set of model parameters. In the Bradley-Terry model, given a pair of team i

and j, the probability that the team i wins the team j, denoted as the ordered pair (i, j), under the
parameter θ ∈ Θ is defined as

P ((i, j) | θ, {i, j}) =
θi

θi + θj
.

Here, each weight θi can be interpreted as the strength of the player i. For simplicity, we do not
consider ties.

In this paper, we consider an online density estimation problem for Bradley-Terry models with the
logarithmic loss. The protocol is defined as follows: For each trial t = 1, . . . , T , (i) Player guesses
θt ∈ Θ. (ii) Adversary chooses a pair of teams it and jt and their game result (it, jt). (iii) Player
incurs the loss ft(θt) = − lnP ((it, jt) | θ, {it, jt}) = − ln

θit
θit+θjt

. The goal of Player is to

minimize the regret: Regret(T ) =
∑T
t=1 ft(θt) − minθ∈Θ

∑T
t=1 ft(θ), where the second term

corresponds to cumulative losses of the maximum likelihood estimator in hindsight.

There are many researches on online density estimation problems for the exponential family includ-
ing Bernoulli and Gaussian (e.g., [4, 5, 6]). The exponential family has various nice properties which
imply robust algorithms with O(lnT ) regret bounds, say, Bayesian algorithms. But, Bradley-Terry
model or logistic regression do not belong to the exponential family. So, previous works on the
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exponential family do not seem to be directly applicable to these models. Also, to the best of our
knowledge, there is no previous result on online density estimation for Bradley-Terry model.

Further, an annoying issue is that the loss function ft(θ) is not convex w.r.t. θ. Equivalent convex
loss functions can be obtained by replacing the variable θ with a new one γ using some bijec-
tion φ : Γ → Θ (see, e.g., [3]). That is, we can reduce the online density estimation problem
for Bradley-Terry model with an online convex optimization problem with convex loss functions
gt(γ) = ft(φ(γ)) = ft(θ). In fact, the new loss function gt can be viewed as a special case of
the logistic function. So, by a reparametrization, our online prediction problem falls into an online
logistic regression problem.

There is, however, a drawback of the reparameterization approach. The problem is that , the radius
of the new domain Γ is unknown or infinitely large in general. Let γ∗ be the offline minimum in
hindsight over the new domain. and K = maxi,j∈[n] e

γ∗
i −γ

∗
j . Then, it can be shown that lnK ≤

‖γ‖2 ≤
√

2n lnK. There are sequences of game results for whichK =∞, which implies ‖γ∗‖2 =
∞.

When we have the knowledge on K, standard algorithms, Online Gradient Descent (OGD, [7])
and Online Newton Step (ONS) are applicable. It can be shown that, when the radius K is known
in advance, Both algorithms have regret bounds O(n

1
2 (lnK)

√
T ) and O(nK lnT ), which seems

suboptimal w.r.t. parameters K or T .

In this paper, we propose an algorithm for the online density estimation of Bradley-Terry models
without any prior knowledge of K. Our algorithm is a Follow the Regularized Leader with a natural
reguralizer, which we just call FTRL for simplicity. At each trial t, FTRL guesses the offline opti-
mizer for the past t− 1 trials with n(n− 1)/η “imaginary” trials where team i wins team j for 1/η
times (and vice versa) for any i 6= j. That is, our regularizer is log loss over such additional fictitious
“even” matches. We show that a regret bound O(n2(lnK + K̃) lnT ) for FTRL, where K̃ is the
maximum of radius over T past incremental offline optimizers assuming the additional n(n− 1)/η

trials. Note that K̃ is always bounded. Further, in our experiments, K̃ is often much smaller than
K. We summarize these regret bounds in Table 1.

Previous Algorithms Our Algorithm
OGD[7] ONS [8] FTRL

n
1
2 (lnK)

√
T (nK + n

3
2 lnK) lnT n2(lnK + K̃) lnT

Table 1: Comparison of regret bounds of previous algorithms and ours for Bradley-Terry model.

Unfortunately, we have not obtained any upper bound of K or K̃ under mild assumptions. On the
other hand, we show a finite lower bound K = Ω(T/n)n−1 by constructing a set of match results
explicitly. Note that this lower bound implies that there is a situation where the regret of ONS
becomesO(T lnT ) for a fixed n, which is worse than the trivial regret bound ofO(T ). On the other
hand, the regret of FTRL is O(ln2 T + K̃ lnT ) in that situation.

Finally, our preliminary experiments on real data sets demonstrate advantages of Bradley-Terry
models over Bernoulli models for ordering tasks.

2 Preliminaries

2.1 Offline algorithms

Typical researches of the offline optimization for BT models assume that there is no “too strong
player” for which K =∞. In particular Hunter [3] considered the following assumption.
Assumption 1. Let S1 and S2 be any partition of [n], i.e., S1 ∪ S2 = [n] and S1 ∩ S2 = ∅. Then,
there exists a player i ∈ S2 such that i beats some player in S1 at least once.

Under Assumption 1, K is always finite and ‖γ∗‖ = O(
√
n lnK). In particular, Hunter proposed

the algorithm called MM (Minorization-Maximization) algorithm which works on the original do-
main Θ. MM algorithm iteratively approximates the non-convex part of the objective with a linear
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function and maximizes the approximated objective. It is shown that MM algorithm converges to
the offline optimum and often runs faster than Newton-Raphson method [3].

3 Algorithm without the knowledge of K

In this section, we consider the situation in which no prior knowledge on K is available. For this
situation, we propose a version of Follow the Regularized Leader with some “virtual matches” as a
regularizer. We simply call the second algorithm FTRL in this paper. FTRL, at each trial t, given
the initial guess θ1 = 1

n1, predicts

θt = arg min
θ∈Θ

t−1∑
τ=1

ft(θ) +
1

η

∑
i,j

fij(θ), (1)

where fij(θ) = − ln θi
θi+θj

. Intuitively speaking, FTRL just predicts the maximum likelihood es-
timator of all the past data with additional “virtual matches” in which for each team i and j, each
beats the other for 1/η times.

Recall that the optimization problem (1) is not convex. However, the additional virtual matches
ensures Assumption 1. Then, the solution θ∗t is unique and we can solve the problem (1) in the
original domain Θ by, e.g., MM algorithm [3], without changing the variables. As shown in [3],
MM runs faster than Newton method.

Now we explain the outline of the analysis of our second algorithm. The first idea is to analyze
FTRL in the reparameterized domain Γ, without the knowledge of K.Then the analysis, again, falls
into an online logistic regression problem. The FTRL framework is well understood when each
loss function is linear or its second-order approximation is available (see, e.g., [9]). But, we take
an alternative approach. We will exploit the fact that in the underlying online logistic regression
problem, each instance xt is sparse, i.e., only two component has values ±1 and other components
are 0s. Based on this fact, our analysis reduces the problem into O(n2) different problems of one-
dimensional online logistic regression. For each one-dimensional problem, a tight analysis can be
obtained (say, as shown by McMahan and Streeter [10]).

Let K̃ = maxTt=1 maxi,j∈[n] θt,i/θt,j .It can be shown that K̃ is always finite even if K is infinitely
large.

We are ready to show our main result.

Theorem 1. For Bradley-Terry model. the regret of FTRL isO(n2(lnK+K̃) lnT ) for η = 1/ lnT .

Implementation of FTRL As mentioned earlier, we can solve the underlying non-convex prob-
lems exactly by taking advantage of the fact that the corresponding offline problem has a unique
minimum and there are algorithms to solve it under a natural assumption (see, e.g., [1, 3]). As is of-
ten the case, such algorithms like MM algorithm solve the non-convex problems faster than solving
the corresponding convex problems in the reparameterized domain. In addition, we suggest to use
the parameter η = c/ lnT for some constant. In fact, the larger the value of 1/η, the smaller the
value of K̃ is. In our experiments, we observe that K̃ is almost as small as O(lnK) (not shown)
with this choice of η.

Discussion on Bayesian Approach For online density estimation problems, Bayesian approaches
are shown to be quite effective to get O(lnT ) regret bounds (e.g., [4, 5, 6]). The typical Bayesian
approach assumes a prior distribution over parameters and predicts the average of parameters w.r.t.
the posterior distribution. Unfortunately, unlike the exponential family, it is not straightforward to
get a regret bound for Bradly-Terry and Logistic models using this approach. Note that FTRL has a
natural Bayesian interpretation that, FTRL predicts the maximum a posterior estimate of parameters
w.r.t. the posterior distribution, where the prior distribution is defined as the likelihood of the vir-
tual 2/η matches between each two players. It is an interesting open question whether a Bayesian
approach achieves O(lnT ) regret bound for these models.
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Figure 1: Regret of each algorithm for EURO2012 (left) and Movie Lense (right). The regret curve
of each algorithm is obtained with its best parameter.

4 Lower Bound of the Radius K

Even when K is finite, we show a lower bound on K by explicitly constructing a set of games. The
set of games is the following: 1 beats 2 for a times, 2 beats 3 for a times, ..., n − 1 beats n for a
times and n beats 1 at once. So, T = a(n− 1) + 1 Then, we can show the lower bound for this set.

Theorem 2. There exists a set of T games for which the offline optimizer γ∗ of Bradley-Terry model

over reparameterized space Γ satisfies K = maxi,j∈[n] e
γi−γj >

(
T−1
n−1 − 1

)n−1

.

5 Experimental Results

In this section, we show some experimental results on real data to illustrate advantages of Bradley-
Terry model to the naive Bernoulli model. Algorithms we compare are KT-estimator[11] for
Bernoulli distributions for each pair and our FTRL for Bradley-Terry models. Note that the Bernoulli
model is the strongest model in the sense that its offline MLE attains the least cumulative loss among
any reasonable probabilistic models. In the experiments with other algorithms (OGD and ONS) for
Bradley-Terry models, FTRL performs comparably or better than these algorithms (omitted).

The first real data set is the soccer game results at EURO 2012 1 which contains 284 games among
53 teams. To deal with ties, we regard a game result that team i wins team j as “team i wins team
j twice”, and a tie between i and j as “team i and team j wins each other once”, respectively. We
randomly permute each data and give them to algorithms sequentially. The parameter η of FTRL is
fixed as η = p/ lnT with the choices of p = 2, . . . , 210.

The second real data set is MovieLense data set which consists of rates of movies by users. In this
experiment, we use a subset of the entire set, containing n = 100 movies and ratings by 100 users.
To generate a sequence of matches between movies, first we pick up two movies randomly among
n movies and choose a user randomly. The movie i wins the movie j if the rates of i by the user
is higher than that of j. We construct T = 104 matches by this method. For both data sets, their
diameter K are infty.

The results of algorithms are shown in Figure 1. Here, both regrets are computed w.r.t. the best
Bradley-Terry model in hindsight. In both experiments, results are averaged over 10 repeats of
these procedures. For each algorithm, its average regret with the best parameter is shown. In both
experiments, FTRL performs better than KT estimator. These results make sense. KT estimator
predicts game results on teams i and j without considering games between other players. So, KT
estimator predicts Pr{i beats j} = 1/2 when there is no game between i and j. On the other hand,
Bradley-Terry model takes into account other game results. So, even when game results are sparse,
it can infer the strength of teams i and j from other games. In particular, FTRL for Bradley-Terry
models performs much better than the other, since MovieLense data has a much sparse structure.

1We collect the game results from the website http://archive.sportsnavi.yahoo.co.jp/
soccer/euro/12/index.html .
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